« Denver Public School System Exemplifies a Healthy Educational Ecosystem | Main | Boise is Alive With Possibility »

The Technologies Reshaping Life and Livelihood

| No comments

On a recent visit to Energy Institute High School in Houston, students were contemplating the impact of robots and artificial intelligence (AI) on their community.

Every high school student should have a similar opportunity to study artificial intelligence and its influence on their life and work. It promises to be the single most important change driver over the next two decades but is seldom discussed on high school campuses.

AI--the notion that machines could exhibit human intelligence--was conceived in the 1950s but it became a really big deal with the recent explosion of big data powered by cheap computing and storage (Moore’s Law) and lots of devices, sensors, cameras and RFID tags (the Internet of Things).

AI is a growing web of related technologies that, given ubiquitous use, broke through to the popular press in 2016. When Google’s DeepMind beat the world champion Go player in March and self-driving cars showed up in Pittsburgh in September, it became obvious that this new cluster of technologies was moving fast and had broad implications.

In the early 2000s, Bill Gates aimed Microsoft researchers at speech recognition. By the end of the decade, they were making progress with deep stacks of neural networks. In the last few years, the use of deep learning algorithms has produced accurate speech and image recognition--in some cases better than experts. AI routinely beats radiologists at tumor detection.

As illustrated above from a blog by tech journalist Michael Copeland, deep learning is a subset of machine learning. If AI is forms of human intelligence exhibited by machines:

  • Machine Learning: A subset of AI, it uses algorithms to learn from data and then make a determination or prediction.
  • Neural networks: A subset of machine learning, was inspired by the connections of the human brain. But unlike the brain, neural nets have discrete layers that direct the data flows. They’ve been around since the early days but were computationally intense

CEO Sundar Pichai has made AI central to the Google strategy, marking a shift from search to suggestion. In the “AI-first” era, Google products will help people accomplish tasks in increasingly sophisticated, even anticipatory ways.

The Venn diagram above illustrates how deep learning is a subset of AI and how, when combined with big data, can inform enabling technologies in many sectors. For examples, to AI and big data add:

The profound change is that rather than hard coding a solution, you can feed large datasets into a machine learning application and it can learn how to perform a task better and quicker than expert humans. The combination of deep learning and big data has resulted in impressive accomplishments in the past year--in addition to beating the world champion Go player (after analyzing millions of professional games and playing itself millions of times), also playing dozens of Atari video games better than humans and reading and comprehending news articles.

AI Transforming Industries

MIT’s Eric Lander said in a few years every biologist will be computational. It looks like the same will be true for doctors, mechanics, economists, water managers and soldiers--nearly every field is being transformed by the combination of AI, big data and enabling technologies.

CB Insights illustrates the explosion of AI startups transforming every industry in the graphic below:

A September Stanford study identified profound impacts in eight domains where AI is already having or is projected to have the greatest impact: transportation, healthcare, education, low-resource communities, public safety and security, employment and workplace, home/service robots and entertainment.

Life With Smart Machines

Back to those high school students contemplating futures with smart machines. Given the opportunity for a two week deep dive, they are likely to draw six conclusions:

  1. Automation will change the nature of work for several billion people—enabling (and requiring) them to work with smart machines while increasing skill requirements and extending individual contributions.
  2. Waves of job losses over the next decade will impact hundreds of millions of people, as roles based on repetitive rules application are likely to be phased out.
  3. High skill jobs will be created in Smart Cities that skill up around emerging opportunities like custom manufacturing.
  4. Human judgment becomes more valuable as machine intelligence makes predictions cheap. Empathy and social interaction, creativity and design thinking, and an innovation mindset will be increasingly in demand.
  5. Income inequality is likely to grow with a divide between those who can code and leverage smart tools and those performing nonrepetitive service jobs. Narrowing the divide will require a new social contract that may include a guaranteed income.
  6. Ethical issues, such as genomic editing, security and privacy, and biases (taught and learned) will outstrip civic problem-solving capacity.

It’s Time To #AskAboutAI

An October White House report suggested that AI has the potential to solve some of the world’s greatest challenges and inefficiencies, specifically in education, healthcare, energy and the environment. On the other hand, AI is rapidly reshaping the employment landscape and surfacing mind-bending ethical issues like genomic editing. Given the opportunities and challenges, it is a topic every school community should be discussing--we think it’s time to #AskAboutAI.

We have four goals for this thought leadership campaign:

  1. Predict labor market impacts including types of jobs and job competencies by 2030.
  2. Identify emerging ethical and social issues that educators, parents and policymakers should begin addressing.
  3. Advise educators, parents and policymakers on knowledge, skills and dispositions likely to be important in the automation economy.
  4. Illustrate new impact pathways that combine domain expertise with data science (we call it cause + code)

We welcome your questions, comments and contributions to this campaign. The future is ours to shape--but it’s coming at us faster than ever.

For more, see:

Notice: We recently upgraded our comments. (Learn more here.) If you are logged in as a subscriber or registered user and already have a Display Name on edweek.org, you can post comments. If you do not already have a Display Name, please create one here.
Ground Rules for Posting
We encourage lively debate, but please be respectful of others. Profanity and personal attacks are prohibited. By commenting, you are agreeing to abide by our user agreement.
All comments are public.


Most Viewed on Education Week



Recent Comments